High Definition Standard Definition Theater
Video id : c6GPgHe7J9Q
ImmersiveAmbientModecolor: #79a863 (color 2)
Video Format : (720p) openh264 ( https://github.com/cisco/openh264) mp4a.40.2 | 44100Hz
Audio Format: 140 ( High )
PokeEncryptID: d7dc27d50b95bf50da3d4da774d1f4efebf7674cdb549484928d5cb833bad69cadab6b75942a859d0a99fedec41fd8fe
Proxy : eu-proxy.poketube.fun - refresh the page to change the proxy location
Date : 1738598235024 - unknown on Apple WebKit
Mystery text : YzZHUGdIZTdKOVEgaSAgbG92ICB1IGV1LXByb3h5LnBva2V0dWJlLmZ1bg==
143 : true
do NOT check the sound #minecraft #shorts #gaming #cave
 60 FPS video
19,988 Views • Jan 30, 2025 • Click to toggle off description
Metadata And Engagement

Views : 19,988
Genre: Gaming
License: Standard YouTube License
Uploaded At Jan 30, 2025 ^^


warning: returnyoutubedislikes may not be accurate, this is just an estiment ehe :3
Rating : 4.982 (7/1,527 LTDR)

99.54% of the users lieked the video!!
0.46% of the users dislieked the video!!
User score: 99.31- Masterpiece Video

RYD date created : 2025-02-02T22:51:59.067836Z
See in json
Connections
Nyo connections found on the description ;_; report an issue lol

17 Comments

Top Comments of this video!! :3

@devin7306

2 days ago

Looks like it’s time to make a small hut till this cave is empty

24 |

@HaydenSpeer

3 days ago

Hmmm, I keep getting Minecraft memes, I think it’s time for the annual 2 week phase 🥳

36 |

@A.x.e.l.-

3 days ago

YES, this always happens to me

12 |

@TheNaturalistGuy

3 days ago

Memes aside it's actually kinda beautiful with the shaders

11 |

@Rablots

2 days ago

I don’t make homes in caves, I AM THE CAVE

1 |

@ProPlants3_2

2 days ago

Thats a lot of glow lichen

1 |

@moonrosin

2 days ago

When you build your base and try to go back there nothing there

1 |

@wyattplays2760

2 days ago

I dont build bases so IN THE CAVE WE GO

2 |

@AshKetchup-h1t

21 hours ago

That's cool, anyway, how to build a particle accelerator:

1. Get a Particle Source: To start, you need a source of charged particles. Protons are a common choice, and they can be created by stripping electrons from hydrogen atoms, leaving positively charged protons behind. Alternatively, you could use electrons, which can be generated using a simple cathode or electron gun. The type of particle you choose depends on the kind of experiments or applications you have in mind.


2. Build a Vacuum Chamber: The particle accelerator needs a vacuum environment for particles to travel without hitting air molecules. Even small interactions with air can slow the particles down or knock them off course. To create this, build a long, sealed metal tube and use vacuum pumps to remove as much air as possible, achieving near-vacuum conditions. This tube is where the particles will travel during acceleration.


3. Install Electromagnets for Steering and Focusing:
Charged particles don't naturally travel in straight lines, so electromagnets are used to steer and focus the particle beam. Wrap copper wire into coils (solenoids) or use specialized electromagnets around sections of the vacuum chamber. These magnets will bend and direct the particles, especially in circular or curved accelerators like a cyclotron or synchrotron. The magnets also focus the beam so it doesn't spread out as it travels.


4. Add RF Cavities for Acceleration: The particles need to be accelerated to near the speed of light for many experiments. This is done using radio frequency (RF) cavities, which create oscillating electric fields. As particles pass through each cavity, the field gives them an extra "kick" of energy, speeding them up. You need to set up multiple RF cavities along the vacuum tube if you're building a linear accelerator, or place them strategically in circular designs like synchrotrons to increase the particles' energy with every lap.


5. Set Up a High-Voltage Power Supply: To power the RF cavities and electromagnets, you'll need a high-voltage power supply. It must be carefully controlled and synchronized to ensure that the RF fields accelerate the particles at the right time, and that the electromagnets are properly tuned to guide them. Depending on the scale of your accelerator, the power requirements could be substantial.


6. Install Detectors to Measure Particles: Once the particles are moving at high speeds, you'll want to monitor their behavior, especially if you're aiming for collisions. Detectors are placed around the end of the accelerator or at key points where the particle beam will interact with targets. These detectors can measure things like particle energy, trajectories, or the results of particle collisions if you're performing experiments.


7. Add Cooling Systems: If your accelerator is large or uses superconducting magnets, you'll need cooling systems, such as liquid helium, to keep the magnets at cryogenic temperatures.
Superconductors lose all electrical resistance at these temperatures, allowing for extremely efficient and powerful magnets. Even if your setup doesn't require superconductors, cooling may be necessary to prevent overheating in the RF cavities and electromagnets.


8. Set Up a Computer-Controlled System: Since many aspects of the accelerator need precise timing and synchronization, you'll need a computer to control the RF cavities, power supply, and magnets. The system will automatically adjust the power and electromagnetic fields in real-time to ensure the particles remain on track and accelerate smoothly. This computer also collects data from the detectors and can adjust the experiment based on results.


9. Test and Calibrate the System: Once everything is in place, it's time to test the accelerator. Initially, you'll fire low-energy particles through the system to check if the vacuum, magnets, and RF cavities are working correctly. You may need to tweak the alignment of the magnets and fine-tune the power settings to ensure the particle beam accelerates efficiently. During this stage, data from the detectors will help you see if the particles are reaching the expected speeds.


10. Run Experiments or Particle Collisions: Once the accelerator is fully functional, you can start running experiments. In a particle collider, for example, you can direct two particle beams to collide at extremely high speeds, creating conditions similar to those just after the Big Bang. The detectors will capture the resulting particles and interactions, allowing you to study fundamental physics. If you're not colliding particles, you can still study their behavior at high speeds or use them to hit a specific target.

|

@KobeGoen

1 day ago

I day ima mine for a minute then get lost for days then make a new world and do the same thing.

|

@Arkannlol

2 days ago

FR like where was all of that when i was looking for it

|

@ThristanHarris

3 days ago

We must stay focus brothas we must stay focus 🫡

1 |

@AshKetchup-h1t

21 hours ago

That's cool, anyway, how to build a particle accelerator:

1. Get a Particle Source: To start, you need a source of charged particles. Protons are a common choice, and they can be created by stripping electrons from hydrogen atoms, leaving positively charged protons behind. Alternatively, you could use electrons, which can be generated using a simple cathode or electron gun. The type of particle you choose depends on the kind of experiments or applications you have in mind.


2. Build a Vacuum Chamber: The particle accelerator needs a vacuum environment for particles to travel without hitting air molecules. Even small interactions with air can slow the particles down or knock them off course. To create this, build a long, sealed metal tube and use vacuum pumps to remove as much air as possible, achieving near-vacuum conditions. This tube is where the particles will travel during acceleration.


3. Install Electromagnets for Steering and Focusing:
Charged particles don't naturally travel in straight lines, so electromagnets are used to steer and focus the particle beam. Wrap copper wire into coils (solenoids) or use specialized electromagnets around sections of the vacuum chamber. These magnets will bend and direct the particles, especially in circular or curved accelerators like a cyclotron or synchrotron. The magnets also focus the beam so it doesn't spread out as it travels.


4. Add RF Cavities for Acceleration: The particles need to be accelerated to near the speed of light for many experiments. This is done using radio frequency (RF) cavities, which create oscillating electric fields. As particles pass through each cavity, the field gives them an extra "kick" of energy, speeding them up. You need to set up multiple RF cavities along the vacuum tube if you're building a linear accelerator, or place them strategically in circular designs like synchrotrons to increase the particles' energy with every lap.


5. Set Up a High-Voltage Power Supply: To power the RF cavities and electromagnets, you'll need a high-voltage power supply. It must be carefully controlled and synchronized to ensure that the RF fields accelerate the particles at the right time, and that the electromagnets are properly tuned to guide them. Depending on the scale of your accelerator, the power requirements could be substantial.


6. Install Detectors to Measure Particles: Once the particles are moving at high speeds, you'll want to monitor their behavior, especially if you're aiming for collisions. Detectors are placed around the end of the accelerator or at key points where the particle beam will interact with targets. These detectors can measure things like particle energy, trajectories, or the results of particle collisions if you're performing experiments.


7. Add Cooling Systems: If your accelerator is large or uses superconducting magnets, you'll need cooling systems, such as liquid helium, to keep the magnets at cryogenic temperatures.
Superconductors lose all electrical resistance at these temperatures, allowing for extremely efficient and powerful magnets. Even if your setup doesn't require superconductors, cooling may be necessary to prevent overheating in the RF cavities and electromagnets.


8. Set Up a Computer-Controlled System: Since many aspects of the accelerator need precise timing and synchronization, you'll need a computer to control the RF cavities, power supply, and magnets. The system will automatically adjust the power and electromagnetic fields in real-time to ensure the particles remain on track and accelerate smoothly. This computer also collects data from the detectors and can adjust the experiment based on results.


9. Test and Calibrate the System: Once everything is in place, it's time to test the accelerator. Initially, you'll fire low-energy particles through the system to check if the vacuum, magnets, and RF cavities are working correctly. You may need to tweak the alignment of the magnets and fine-tune the power settings to ensure the particle beam accelerates efficiently. During this stage, data from the detectors will help you see if the particles are reaching the expected speeds.


10. Run Experiments or Particle Collisions: Once the accelerator is fully functional, you can start running experiments. In a particle collider, for example, you can direct two particle beams to collide at extremely high speeds, creating conditions similar to those just after the Big Bang. The detectors will capture the resulting particles and interactions, allowing you to study fundamental physics. If you're not colliding particles, you can still study their behavior at high speeds or use them to hit a specific target.

|

Go To Top