Channel Avatar

Maurits Haverkort @UCZfwf-vpY6LlbUbSqm5dqAA@youtube.com

1.1K subscribers - no pronouns :c

Maurits W. Haverkort is a professor at the institute for the


49:54
Advanced Quantum Physics 02 - The non-relativistic limit of the Dirac equation
27:22
Advanced Quantum Physics 01 - Introduction to quantum physics and the Dirac equation
24:58
Quantenmechanik 23 - Dirac-Gleichung
45:04
Quantenmechanik 22 - Zeitentwicklungsoperator und Dyson-Reihe
01:17:36
Quantenmechanik 21 - Störungstheorie - Teil 2 ZeitabhÀngige Störungen
01:10:48
Quantenmechanik 20 - Störungstheorie
01:23:26
Quantenmechanik 19 - Elektromagnetische Wechselwirkung
01:26:42
Quantenmechanik 18 - N Teilchensysteme
01:25:56
Quantenmechanik 17 - Spin
01:12:24
Quantenmechanik 16 - Das Wasserstoffatom Teil 2
01:21:25
Quantenmechanik 15 - Das Wasserstoffatom
01:24:30
Quantenmechanik 14 - Drehimpulskopplung, TensorproduktzustÀnde und Clebsch-Gordan-Koeffizienten
01:27:15
Quantenmechanik 13 - Rotationssymmetrie und Drehimpulserhaltung
01:21:10
Quantenmechanik 12 - Symmetrien und ErhaltungssÀtze.
01:19:36
Quantenmechanik 11 - Beobachtungen, Verteilungsfunktionen, und Wahrscheinlichkeit.
01:22:20
Quantenmechanik 10 - Lineare Algebra - Hilbertraume und Operatoren
01:22:02
Quantenmechanik 9 - Lineare Algebra - ZustÀnde und Hilbertraume
01:22:41
Quantenmechanik 8 - Der harmonische Oszillator
01:12:23
Quantenmechanik 7 - Wellendynamik fĂŒr Beispielpotentiale
01:18:44
Quantenmechanik 6 - Die Heisenberg’sche UnschĂ€rferelation
01:25:36
Quantenmechanik 5 - Wellenpakete mit endlichem Impuls
01:19:13
Quantenmechanik 4 - Wellenmechanik
01:26:30
Quantenmechanik 3 - Die mathematische Eigenschaften der Schrödingergleichung
01:00:17
Quantenmechanik 2 - Die Schrödingergleichung und die Postulaten der Quantenmechanik
01:06:20
Quantenmechanik 1 - Die Grenzen der klassischen Physik
48:38
16.01 Dynamical Mean Field Theory
20:43
15.05 The solid from a local perspective - Ligand Field Theory - NiO and CuO compared to experiment
22:37
15.04 The solid from a local perspective - Ab initio Ligand Field Theory: the example of NiO
01:06:19
15.03 The solid from a local perspective - Ligand field theory
56:27
15.02 The solid from a local perspective - Crystal field theory
22:46
15.01 The solid from a local perspective
01:04:46
14.01 Local Coulomb Interaction - Atomic Multiplets
30:55
14.03 Local Coulomb Interaction - Effective Hopping Integrals
59:17
14.02 Local Coulomb Interaction - Spin Orbit Coupling and Magnetic Moments
01:11:00
13.02 Electron Correlations - The hydrogen molecule or Hubbard Dimer
26:35
13.01 Electron Correlations - Correlations, Fluctuations and Entanglement.
09:30
12.08 Response theory - Kramers Kronig relations
26:53
12.07 Response theory - Dissipation
13:16
12.06 Response theory - Relation between time and frequency domain
23:30
12.05 Response theory - General derivation in the time domain
17:05
12.04 Response theory - General derivation in the frequency domain
44:33
12.03 Response theory - Hydrogen atom in oscillating electric field
45:00
12.02 Response theory - Classical Harmonic Oscillator
16:27
12.01 Response theory
29:52
11.05 Phases of matter: Symmetry and Topology - Topological surface states
27:04
11.04 Phases of matter: Symmetry and Topology - Topological phases
41:07
11.03 Phases of matter: Symmetry and Topology - The irreducible representation as an order parameter
01:34:28
Symmetry and group theory
46:54
11.01 Phases of matter: Symmetry and Topology - Landau's theory of phase transitions
19:47
10.08 Relativistic effects - Spin orbit coupling one particle eigenstates
44:06
10.07 Relativistic effects - Overview: Relativistic effects in solids
10:59
10.06 Relativistic effects - Atomic spin orbit coupling constants
18:14
10.05 Relativistic effects - Spin orbit coupling in a spherical potential
29:24
10.04 Relativistic effects - The non relativistic limit
16:48
10.03 Relativistic effects - Free relativistic electron wave function
05:20
10.02 Relativistic effects - The Dirac equation with electromagnetic fields
20:29
10.01 Relativistic effects - The Dirac equation
22:40
09.6 Surface states - A cubic lattice with an s and p orbital per unit cell as basis.
13:56
09.5 Surface states - Bound surface states without a surface potential
33:03
09.4 Surface states - Surface potential and bound states