Channel Avatar

Jeff Heaton @UCR1-GEpyOPzT2AO4D_eifdw@youtube.com

91K subscribers - no pronouns :c

Videos about my machine learning projects. ** Follow Me on


09:32
When is fine tuning necessary (11.1)
07:32
MultiModal LLM Chat Application in StreamLit (10.5)
06:34
Creating an LLM Chat Application (10.4)
08:30
Understanding StreamLit State (10.3)
12:39
StreamLit Introduction (10.2)
11:06
Running StreamLit in Google CoLab (10.1)
04:17
How AI Mastered Language: From Grammar Rules to Deep Learning
07:32
MultiModal Models (9.4)
04:28
LLM and DALLE Creates Illustrated Book (9.5)
06:31
Editing Existing Images with DALL·E (9.3)
09:25
Generating Images with DALL·E (9.2)
06:23
Introduction to MultiModal and Text to Image (9.1)
06:57
Running Small LLMs in Kaggle Notebook (8.4)
08:34
Small Large Language Models (8.3)
12:39
Kaggle Notebooks (8.2)
11:54
Kaggle Introduction (8.1)
04:39
LangChain Custom Agents (7.5)
05:40
LangChain Agents, RAG, Tools, Memory (7.4)
08:32
LangChain Agent Search Tools (7.3)
07:43
LangChain Agent Tools (7.2)
05:57
Running ChromaDB as a Server (6.5)
09:46
LangChain Agents (7.1)
10:04
Question Answering over Documents with RAG (6.4)
07:30
Word Embeddings (6.3)
07:48
Introduction to Embedding Database, ChromaDB (6.2)
10:23
Introduction to RAG (6.1)
02:45
Output-Fixing Parser (5.5)
05:25
Pydantic parser (5.3)
06:08
Other Parsers CSV, JSON, Pandas, Datetime (5.2)
05:01
Custom Output Parser (5.4)
05:23
Persisting LangChain Memory (4.5)
06:33
Structured Output Parser (5.1)
05:16
Conversation Token Buffer Memory (4.3)
04:42
Conversation Summary Memory (4.4)
07:16
Conversation Buffer Window Memory (4.2)
08:14
LangChain Conversations (4.1)
07:30
LLM Writes a Book (3.5)
06:57
LLM Text Classification (3.4)
04:42
LLM Text Summarization (3.3)
08:01
LLM Text Generation (3.2)
09:32
LLM Foundation Models (3.1)
08:57
Limits of LLM Code Generation (2.5)
07:51
Tracking Prompts in Software Development (2.4)
06:20
Using a LLM to Help Debug (2.3)
10:19
Handling Revision Prompts (2.2)
11:24
Prompting for Code Generation (2.1)
04:55
Prompt Engineering (1.5)
08:47
Introduction to LangChain (1.4)
09:13
Introduction to OpenAI (1.3)
11:07
Generative AI Overview (1.2)
09:07
Applications of GenAI (1.1)
13:42
Model Drift and Retraining (13.3)
07:54
Tensor Processing Units (TPUs) (13.4)
13:26
Using Denoising AutoEncoders (13.1)
06:20
Anomaly Detection (13.2)
03:28
Future of Reinforcement Learning (12.5)
02:32
Atari Games with Stable Baselines Neural Networks (12.4)
05:05
NVIDIA GTC 2024 Jensen Huang Keynote Blackwell Reactions
04:28
NVIDIA GEFORCE GTX 4080 GTX GPU Giveaway for GTC 2024
11:12
Course Overview: Applications of Generative AI (1.1)