Channel Avatar

Little Dino @UCFQz1wUrQ-aikyESzUz5oKQ@youtube.com

98 subscribers - no pronouns :c

Hey guys, I hope these short videos about statistics, data m


13:11
K-means clustering in Python - Iris dataset
12:32
K-fold cross validation (hyper-parameter tuning) in Python
15:14
Logistic regression in Python
10:40
Association mining in Python
10:42
K-nearest neighbor in Python - Iris dataset
09:06
Decision tree in Python - Titanic dataset
06:56
Introduction to Cross validation in 7 mins
02:56
Model evaluation 4 - Model selection criteria
03:57
Model evaluation 3.3 - AUC (Area under the curve)
07:59
Model evaluation 3.2 - ROC curve (Derive and Interpret)
05:53
Model evaluation 3.1 - ROC curve (Why use it)
06:06
Model evaluation 2.7 - 0.632 Bootstrap
02:51
Model evaluation 2.6 - Hold-out validation
05:49
Model evaluation 2.5 - Leave-1-out cross-validation
04:34
Model evaluation 2.4 - Leave-p-out cross-validation
03:21
Model evaluation 2.3 - Stratified K-fold cross-validation
05:29
Model evaluation 2.2 - K-fold cross-validation
07:40
Model evaluation 2.1 - Training, Validation, Testing set
05:40
Model evaluation 1.6 - F beta score
06:35
Model evaluation 1.5 - F1(F)-score
05:47
Model evaluation 1.4 - Recall, Precision
06:22
Model evaluation 1.3 - Sensitivity, Specificity
05:56
Model evaluation 1.2 - Class imbalance problem
05:57
Model evaluation 1.1 - Accuracy, Error rate
03:18
Naïve Bayes 3 - Laplacian correction
04:52
Naïve Bayes 2.2 - Example
05:40
Naïve Bayes 2.1 - Introduction
04:51
Naïve Bayes 1 - Probability theory
04:18
Gini index 1.2 - Example
05:30
Gini index 1.1 - Introduction
05:06
Introduction to Gain ratio in 5 mins
06:27
Information gain 2 - Example
05:04
Information gain 1 - Entropy
05:43
Introduction to Decision tree in 6 mins
07:09
Classification - Purpose & Process
05:51
Frequent itemset mining 2 - Generating strong rules
06:41
Frequent itemset mining 1 - Apriori algorithm
04:23
Association mining 5 - Null invariance
07:12
Association mining 4 - Chi-square statistics
06:30
Association mining 3 - Lift
05:41
Association mining 2 - Association rules, Confidence
05:53
Association mining 1 - Introduction, Support
04:59
Basic OLAP operations in 5 mins
05:35
Modeling cubes in RB - Star schema, Snowflake schema, Fact constellation
06:13
Introduction to Data warehouse
04:29
Proximity measures 5 - Cosine similarity
04:45
Proximity measures 4 - Ordinal data
07:09
Proximity measures 3.2 - Numeric data (Minkowski distance)
06:24
Proximity measures 3.1 - Numeric data (Normalization)
06:34
Proximity measures 2 - Binary data
05:34
Proximity measures 1 - Dissimilarity matrix, Nominal data
06:14
Data dispersion in statistics 2 - Variance, Standard deviation
06:23
Data dispersion in statistics 1 - Range, IQR, Boxplot
07:11
Central tendency - Mean, Median, Mode, and Skewness
06:59
Data type in statistics in 7 mins
08:06
Introduction to Data mining (KDD) in 8 mins