Channel Avatar

Nadira Povey @UC_VaumpkmINz1pNkFXAN9mw@youtube.com

895 subscribers - no pronouns :c

More from this channel (soon)


24:37
Ilya Sutskever: Sequence to Sequence Learning with Neural Networks at NeurIPS 2024
31:30
2024 ZGC Forum: Dan Povey - Effect of AI on Society
11:46
#68 Questions From Youtube Viewers
08:35
#67 K2fsa: Training Advice for Beginners
13:49
#66. K2fsa: Beginner's Questions: Tensorboard, Troubleshooting
06:53
#65 Nadira: Icefall: LibriSpeech Training for Beginners
05:48
#64 Nadira: Train RNNLM and 2-gram for LODR decoding
03:37
#63 GPUs for  Model Training
06:51
#62 Context Biasing
24:27
#61 Data Preparation with prepare.sh
19:36
#60 Audio Segmentation using Text Search project
07:33
#59 Predicting Multi-Codebook Vector Quantization Indexes for Knowledge Distillation
16:06
#58 D.Povey - Cambridge Life / Candlelight dinners in wizard's type robe
13:32
#57 LibriLight/LibriHeavy   Audio Alignment and Segmentation
11:55
#56 GPU-accelerated Guided Source Separation for Meeting Transcription
03:33
#55 Zipformer and Paraformer Explained
06:01
#54 LF-MMI / ASGD Training
03:15
#53 Rust /C++/Deep Learning
06:51
#52 PyTorch vs ONNX vs NCNN
01:56
#51 Nadira: Create API with AWS API Gateway
04:48
#50 ASR Future/Advice to Master's Students/JAX/TPUs
07:07
#49 FastEmit [Google Paper]
07:22
#48 Shallow Fusion
09:04
#47 Ragged Tensors
05:40
#46 Dan Kaldi: nnet2 feature extraction diagram
05:20
#45 Dan Kaldi: nnet1 nnet2 and nnet3 explained.
07:25
#44 How does New Bing with ChatGPT work?
10:23
#43 D. Povey - simple questions about researcher's life.
07:07
#42 Teaching speech recognizers new words — without retraining [Amazon AWS AI SLT 2022 paper]
00:30
Next-Gen Kaldi Android App. Part 4/4 Chinese (Background music)
00:31
Next-Gen Kaldi Android App. Part 2/4 Chinese + English
00:24
Next-Gen Kaldi Android App. Part 1/4 Pure Chinese (No background noise)
00:55
Next-Gen Kaldi Android App. Part 3/4 Chinese with noise
03:15
Nadira#41 BART: Abstractive Summarization
06:55
Dan #40: LM Rescoring for RNN-T setup
04:03
Nadira #39: k2 icefall colab notebooks
01:59
Nadira #38 Next-gen Kaldi: decode files using sherpa server
04:56
Nadira #37 Next-gen Kaldi: sherpa server
18:37
Dan K2 #36: What is BPE and lang_bpe_500?
05:51
Nadira K2 #35 Decoding test_clean and test_other from LibriSpeech dataset.
07:27
Dan Kaldi #34 Endpointing
02:33
Dan Kaldi#33 Forced Alignment
03:24
Dan K2 #32 Multiple Datasets in Training Next-gen Kaldi
05:53
Nadira K2 #31 Hugging Face and export.py
01:01:43
Dan K2 #30 Daniel Povey BAAI 2022 Conference Full Version
00:58
Dan K2 #29 Favorite Toolkit for Students BAAI Conference P9 Q6
01:25
Dan K2 #28 RNNT and Conformer BAAI Conference P8 Q5
01:36
Dan K2 #27 Data Augmentation BAAI Conference P7 Q4
01:11
Dan K2 #26 WFST to Integrate a Language Model BAAI Conference P6 Q3
01:39
Dan K2 #25 Next-gen Kaldi vs WeNet BAAI Conference P5 Q2
01:14
Dan K2 #24 Next-gen Kaldi for Smart Phone Devices BAAI 2022 Conference P4 Q1
36:32
Dan K2 #23 Reworked Conformer Model: BAAI Conference P3
05:37
Dan K2 #22 Pruned training for RNN-T BAAI Conference P2
09:31
Dan K2 #21 Next-gen Kaldi: what is it? BAAI Conference P1
03:27
Nadira K2 #20 How to Train Icefall Model
04:19
Nadira K2 #19 Hugging Face Test LibriSpeech and GigaSpeech
01:54
Nadira K2 #18 Icefall prepare.sh
07:21
Nadira K2 #17 Install Icefall
01:06
Nadira K2 #16 Install Lhotse
01:29
Nadira K2 #15 Install Graphviz